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Constrained Boundary Monitoring for

Group Sequential Clinical Trials

Abstract

Group sequential stopping rules are often used during the conduct of clinical
trials in order to attain more ethical treatment of patients and to better address
efficiency concerns. Because the use of such stopping rules materially affects
the frequentist operating characteristics of the hypothesis test, it is necessary
to choose an appropriate stopping rule during the planning of the study. It is
often the case, however, that the number and timing of interim analyses are not
precisely known at the time of trial design, and thus the implementation of a
particular stopping rule must allow for flexible determination of the schedule
of interim analyses. In this paper we consider the use of constrained stopping
boundaries in the implementation of stopping rules. We compare this approach
when used on various scales for the test statistic. When implemented on the
scale of boundary crossing probabilities, this approach is identical to the error
spending function approach of Lan & DeMets (1983).



2 Introduction

While randomized treatment trials are in progress, Data Safety Monitoring Boards

(DSMBs) typically conduct interim analyses of accumulating observations for early

evidence of harm, e¢cacy or futility of treatment. Decisions to stop a trial early may

be based upon the primary outcome of interest and/or other considerations, such

as treatment toxicity or ethical concerns. Using families of group sequential stop-

ping rules, investigators may initiate clinical trials with sampling schemes adapted

to the particular treatments, ethical concerns and …nancial considerations involved.

However, the estimated schedule of interim analyses, which is required to compute op-

erating characteristics such as power and average sample number (ASN), is frequently

altered over the course of the study. Meetings of the DSMB are usually scheduled ac-

cording to a calendar. Hence, accrual rates that are faster or slower than anticipated

may result in analyses performed with either more or less statistical information than

originally planned. In addition, results reported from other studies or DSMB concerns

about toxicities or adverse events may lead to additional, unscheduled analyses.

To address such deviations from planned analysis schedules, Whitehead & Strat-

ton (1983) proposed a “Christmas tree” adjustment to their triangular test. This

adjustment substitutes observed increments in the statistical information levels into

the approximate formulae for the continuous triangular test boundaries. As noted

by Emerson (1996), so long as an adjusted P-value is used for inference at the …nal

analysis, the type I error can be maintained exactly.

Lan & DeMets (1983) adapted a suggestion by Slud & Wei (1982) to compute
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boundaries, at each analysis, from the inverse function of the cumulative boundary

crossing probabilities under the null, where the probabilities are constrained to equal

a pre-speci…ed, increasing sequence, with the last element set to the total type I error.

The adapted procedure replaces the …xed sequence with a pre-speci…ed function of

the proportion of the trial completed, where the proportions are often based upon

a planned maximal sample size or level of statistical information. The computation

of these probabilities, using recursive numerical integration, requires only the history

of analysis times and a variance estimate. Hence, analysis times may be speci…ed as

needed during the trial. Provided that the schedule of analyses does not depend upon

the interim estimates of treatment e¤ect, this “error spending” approach maintains

the type I error of a trial exactly while allowing for ‡exibility in the scheduling of

analyses. When such dependencies exist, Betensky has proposed an approximation

to the continuous monitoring boundary for an error spending function (1998).

Because spending functions are de…ned on a special scale, their adaptation to

families of group sequential designs that are de…ned on other scales requires the use

of interpolation to generate an induced error spending function, which may or may

not well-approximate the boundary relationships of the original design. In this article,

we propose a procedure for recomputing boundary function critical values at interim

analyses, while constraining the boundary functions to match the boundaries actually

used at prior analyses. Flexible monitoring can then be directly implemented with

any family of group sequential stopping rules. Boundary constraints also facilitate

the custom-tailoring of boundary shape functions during the planning of a trial. We

provide examples based upon simulated data using the uni…ed family of Kittelson &
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Emerson (1999), which includes the triangular test and the Wang & Tsiatis power

family (1987), as well as many others. We adapt the procedure to allow for the

maintenance of both type I and II errors, in a manner similar to the type II error

spending functions of Pampallona, Tsiatis & Kim (1995).

3 Setting and Notation

We consider a two-arm randomized trial of a treatment (group 1) versus control

(group 0), with independent observations Y`i s (¹`; ¾2` ) ; ` = 0; 1; i = 1; 2; : : : ; N`J .

At calendar times t1; t2; : : : ; tJ, analyses are performed on the available data on N`j

subjects in group `, and, for convenience, we de…ne NJ = N0J + N1J . At the j-th

analysis, we estimate treatment e¤ect with the maximum likelihood estimate (MLE),

µ̂j = ¹Y1j ¡ ¹Y0j, where ¹Y j̀ = 1
N`j

PN`j
i=1 Y`i. In the absence of early stopping, µ̂j

is asymptotically normally distributed with mean µ = ¹1 ¡ ¹0 and variance Vj =

¾21
N1j

+ ¾20
N0j

. In this setting, the sequence of estimates,
n
µ̂j

o
, has the independent

increment structure often assumed in the development of group sequential methods

(see, for instance, Jennison & Turnbull, 2000, Chapter 3).

Following Kittelson & Emerson (1999), at each analysis, j = 1; : : : ; J , for some

statistic Tj, we de…ne stopping sets of the form Sj ´ f(¡1; aj] [ (bj; cj) [ [dj;1)g

and continuation sets, Cj ´ Scj, where aj · bj · cj · dj and aJ = bJ and cJ = dJ .

The trial stops at the M -th analysis, where M = minfj : Tj 2 Sjg.

For continuation and stopping sets on the MLE scale (so, Tj = µ̂j) the density

for the asymptotic distribution at
³
M =m; µ̂M = x

´
, when group sample sizes are
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equal, can be written following Armitage, McPherson & Rowe (1969):

pµ̂ (m;x; µ) =

8
>><
>>:

fµ̂ (m;x; µ) x =2 Cm

0 otherwise
(1)

where the function fµ̂ (j; x; µ) is recursively de…ned as:

fµ̂ (1; x; µ) = 1p
V1
Á

µ
x¡ µp
V1

¶

fµ̂ (j; x; µ) =
Z

Cj¡1

1q
n1j
N1j
Vj
Á

0
@x ¡ 1

N1j

¡
N1(j¡1)u+ n1jµ

¢
q
n1j
N1j
Vj

1
A fµ̂ (j ¡ 1; u; µ) du

where n0j = n1j = N1j ¡N1(j¡1); j = 2; : : : ; J .

There are a number of scales on which Tj can be de…ned, including the partial

sum scale, normalized Z statistic scale, …xed sample P-value scale, MLE scale, and

error spending scale (Lan & DeMets, 1983). For instance, when N1j = N0j, the …rst

three of these scales are given by:

partial sum statistic: N1j µ̂j

normalized Z statistic: V ¡
1
2

j µ̂j

…xed-sample P-value: 1¡ ©
³
V ¡

1
2

j µ̂j
´

(2)

A statistic on the upper type I error spending scale, corresponding to the obser-

vation
³
M =m; µ̂m = x

´
, where x > dm , may be de…ned as:

Edm =

Ã
m¡1P
j=1

R 1
dj
p (j; u; µ0) du

!
+

R1
x p (m;u; µ0) du

JP
j=1

R1
dj
p (j; u; µ0) du

(3)

Similar scales can be de…ned for lower type I and upper and lower type II errors

(Emerson, 2000). These scales, as well as the stochastic curtailment, Bayesian pre-
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dictive probabilitiy and posterior probability scales, are easily shown to be one-to-one

transformations of each other.

The exact stopping boundaries across the J analysis times can be related to each

other through the use of boundary shape functions. Letting 0 < ¦1 < ¢ ¢ ¢ < ¦j <

¢ ¢ ¢ < ¦J = 1 denote the proportion of the trial completed at analysis j, we de…ne

aj = a (¦j) ; bj = b (¦j) ; cj = c (¦j) ; dj = d (¦j), where the exact form of the

boundary shape functions will depend upon the scale for Tj that is used to de…ne

stopping sets.

4 Design-time Tailoring of Stopping Rules using Boundary Constraints

Group sequential sampling schemes typically link the stopping sets across analyses by

way of smooth parametric functions of the proportions ¦j, on some boundary scale.

Kittelson & Emerson (1999), for instance, proposed a family of upper boundaries for

a test of H0 : µ = 0 , in which stopping occurs the …rst time

µ̂j > dj =
³
Ad + ¦¡Pd

j (1¡ ¦j)Rd
´
Gd ; (4)

where Ad; Pd and Rd are user speci…ed boundary shape parameters, and Gd is a

critical value found by computer search to attain a desired type I error. The subscript

d identi…es parameters and critical values for an upper (d) boundary, with similar

de…nitions applying to the a; b and c boundaries. Similarly, Emerson (2000) has

extended the parametric family of error spending functions that was described by

Kim & DeMets (1987), such that early stopping occurs the …rst time

Edj < dj =
³
Ad + ¦¡Pd

j (1¡ ¦j)Rd
´
Gd ; 0 · dj
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where Pd and Rd are user speci…ed and determine Ad and Gd, since dj (¦J = 1) = 1.

Error spending scale boundaries are conventionally transformed to stopping rules on

another scale. For example, for a comparison to the estimate of treatment e¤ect, Edj

may be transformed by way of the inverse of Equation 3.

When designing a group sequential stopping rule, a chosen parameterization for

a family of boundary shapes will likely meet most requirements. However, special

considerations may lead to questions regarding the appropriateness of potential stop-

ping decisions at certain analyses. In such cases, investigators can amend the design

based upon a boundary shape with minimum, maximum or exact constraints for these

analyses.

For example, when considering a design based upon an O’Brien-Fleming boundary

shape, members of a DSMB might object to boundaries at early analyses that are too

large in magnitude to result in early stopping for extreme estimates of treatment e¤ect.

One common modi…cation to address this concern speci…es boundaries at interim

analyses to be the less extreme of O’Brien-Fleming and Haybittle-Peto boundaries,

which use two-sided …xed-sample P-values of 0.001 at all interim analyses.

[Place Table 1 Here]

Table 1 summarizes a hypothetical example of such a minimum constraint on an

O’Brien-Fleming (1979) design for a two-sided test, which allows early stopping only

under the alternative hypothesis. For a test of an increase or decrease in systolic

blood pressure (SBP) of 10 mmHg, the boundary at the …rst of four analyses, with

1/4 of the maximal sample size (16 of 64), rejects the null hypothesis of no di¤erence

7



if the sample mean SBP in the two groups di¤ers by more than 20.24 mmHg (1.i).

If a di¤erence of this magnitude is considered extreme by the DSMB, a minimum

constraint of 0:0005 might be speci…ed for the upper one-sided P-value at the interim

analyses. With the boundary function incorporating this constraint, a di¤erence

in sample means of 16.45 mmHg results in a recommendation for early stopping.

The O’Brien-Fleming boundary shape is characteristically constant on the partial

sum scale, and Table 1 shows that the newly de…ned, constrained shape function is

constant on this scale at all analyses but the …rst. We note that the computer search

for Ga and Gd results in a slight increase in magnitude of the boundaries at analyses

2-4, in order to accommodate the constraint while maintaining the speci…ed type I

error at 0.05. Also, the power to detect the alternative declines from 0.9546 to 0.9543.

The return for this slight decrease in power (s 0:035%) is a 3:08% reduction in the

ASN at the alternative. Figure 1 shows the ASN for the two designs, plotted against

assumed true treatment e¤ects. Note that one might also choose to maintain power

when adding the constraint, which, in this case, would require an increase in maximal

sample size of only a fraction of an observation. This design may also be considered

a hybrid of an O’Brien-Fleming design and an extremely conservative Pocock design,

as a Pocock design is constant on the …xed-sample P-value scale.

[Place Figure 1 Here]

At design time, a parametric boundary function with constraints de…nes a new

boundary function on the same scale. Such functions are often compositions of distinct

boundary shape functions, which may be globally constructed, based upon minimum
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or maximum operators, or piecewise over the trial proportions, f¦Jg. Operating

characteristics may be computed in the same manner as other group sequential designs

(Emerson, 2000).

5 Design-time Alternatives for the Number and Timing of Analyses

The boundaries given by Equation 4 determine the continuation sets in the sampling

density for the treatment e¤ect (Equation 1). Computation of the total type I error

requires all J continuation sets, with up to four boundary values each, faj; : : : ; djg,

and their associated trial proportions, f¦jg. It follows that the search for critical

values for each boundary, fG²; ² = a; : : : ; dg, that together satisfy a total type I

error constraint will depend upon the complete sequence f¦jg. When alterations are

made to the number or timing of analyses, previous critical values will not, in general,

continue to satisfy the type I error constraint.

Table 2 illustrates how boundaries at earlier analyses depend upon the trial pro-

portions of later analyses. The table summarizes eight possible pre-trial designs, with

four or …ve planned analyses, O’Brien-Fleming (i) or Pocock (ii) boundary shapes

and four (A-D) sequences of proportions. Plan B adds an early analysis, at trial

proportion 1/8, to the schedule in Plan A, Plan C shifts Plan B’s analysis at 1/2

earlier, to 3/8, and Plan D shifts Plan C’s analysis at 3/4 earlier, to 5/8. All designs

are two-sided, with early stopping only under the alternative. The upper boundary is

shown for each analysis, on both the treatment e¤ect and error spending scales. For

the Pocock design, the constant upper Normalized Z scale boundary is also shown.
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The sample size for each plan is held constant at the value achieving power 0.975 for

design A.

[Place Table 2 Here]

When comparing column C to column D, we note that the shift of the last interim

analysis from 3/4 to 5/8 changes all prior boundaries on both the treatment e¤ect

and error spending scales, though for the O’Brien-Fleming design, the change to

the error spending scale boundary for the analysis at 1/8 is beyond the 4th decimal

place. We further note that the error spent by the Pocock design at 1/4 changes from

0.3642 for Plan A to 0.5030 for Plan B and, …nally, to 0.4983. This illustrates how

induced error spending functions are sensitive to the number and timing of analyses:

there is no single Pocock or O’Brien-Fleming induced error spending function. It

is straightforward to con…rm that the induced error spending functions for these

group sequential families are also quite sensitive to levels of type I and type II error

(Emerson, Kittelson & Gillen, 2003).

6 Flexible Monitoring with Constrained Boundaries

The designs shown in Table 2 all presume a schedule known in advance. Now we

consider what happens when the planned schedule of analyses is altered during the

trial. For instance, suppose that the monitoring schedule for the Pocock design, Plan

A, Table 2, was anticipated, but the trial proportions for the actual interim analyses

are given by columns B-D. In other words, an unplanned analysis is conducted at 1/8,

the analysis at 1/4 occurs as planned, and the analyses at 1/2 and 3/4 are shifted
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earlier, to 3/8 and 5/8, respectively.

When implementing a stopping rule with unplanned alterations to the schedule of

analyses, investigators must choose between 1) maintaining the maximal sample size

(statistical information) or 2) maintaining the power for a speci…ed upper or lower

alternative. With the second approach, investigators have the option of specifying an

absolute maximum and/or minimum for the sample size.

Monitoring, as described here, may involve four scales. 1) During the planning

of the trial, the parametric family of boundary shapes maps trial proportions to

boundary values on a “design” scale. 2) In order to facilitate monitoring, some of the

planned design’s operating characteristics may be used to induce a boundary shape on

an “implementation” scale. An example is the interpolation over cumulative boundary

crossing probabilities under the null to induce a type I error spending function (Eales

& Jennison, 1992). 3) At interim analyses, stopping rules may be transformed to a

third–“stopping set”–scale for comparison to a statistic on that scale. An example

is the use of the …xed-sample P-value scale, in order to compare P-values from a

t-distribution to boundaries generated by software packages (Pocock, 1977). 4) Here

we propose a monitoring procedure that constrains boundary shape functions–on a

“constraint scale”–to re‡ect the stopping rules applied at previous interim analyses.

The choice of constraint scale becomes important when the variance is unknown. This

point is illustrated in Section 6.4.

As an example, Wang & Tsiatis (1987) used a normalized partial sum scale (a

sum of incremental Z-statistics) for group sequential trial design and stopping sets.

Interpolation over a Wang & Tsiatis design’s cumulative boundary crossing prob-
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abilities would allow for an error spending scale implementation. With the latter,

stopping sets are typically transformed to another scale, such as the treatment e¤ect

or …xed-sample P-value scale.

6.1 A Flexible Monitoring Algorithm for Maintaining Sample Size

The test type, hypotheses, size, power, boundary scales (1-4, above) and boundary

functions are speci…ed prior to the start of the trial. An estimate of the analysis

schedule is also speci…ed. We refer to these parameters as the design. Here, we de…ne

¦j = Nj=NJ ; j = 1; : : : ; J . Adaptations to other measures of trial proportion are

straightforward. The estimated stopping sets at the jth analysis will include the

actual boundaries at earlier analysis, a¤k ; : : : ; d¤k; k = 1; : : : ; j ¡ 1, the boundaries

computed for the current analysis, aj; : : : ; dj, and the boundaries computed for the

estimated schedule of future analyses, ak ; : : : ; dk; k = j + 1; : : : ; J . For a speci…ed

maximal sample size, ‡exible monitoring is then implemented as follows:

1. First analysis: if the sample size does not match the plan, or if the estimated

future analysis schedule is amended, recompute the boundary function critical

values, fG²; ² = a; : : : ; dg, using the observed trial proportion, ¦¤1, and the–

possibly revised–estimate of future trial proportions, ¦2; : : : ;¦j¡1. In general,

the future analysis schedule may be revised at each analysis to accommodate

new logistical requirements and outside information, subject to the …xed maxi-

mal sample size. As noted in Section 2, rescheduling based upon the estimates

of treatment e¤ect is best avoided, due to the possibility of type I error in‡ation.
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Evaluate whether or not to continue the trial, by comparing a test statistic to

the …rst stopping set.

2. Second analysis: rede…ne the boundary functions to incorporate an exact con-

straint for the stopping set from the …rst analysis, using the methods described

in Section 4. The new boundary function …xes the boundary at the …rst analysis

to the value actually used at the observed trial proportion ¦¤
1. Specify bound-

ary value equalities on the constraint scale chosen at design-time. In practice,

any of the scales in (2) or (3) may be used; typically, the design or stopping

set scale is used, or, alternatively, the error spending scale when monitoring is

implemented on that scale. We now refer to the boundary functions as “con-

strained on” this scale at prior analyses. Recompute the boundary function

critical values fG²; ² = a; : : : ; dg using the history of observed trial propor-

tions and the–possibly revised–estimate of future trial proportions. Evaluate

whether or not to continue the trial.

3. jth analysis, j = 3; : : : ; J ¡ 1 : constrain ak (¦k) = a¤k ; : : : ; dk (¦k) = d¤k ; k =

1; : : : ; j ¡ 1, where a¤k ; : : : ; d¤k are values taken from the stopping sets at analy-

sis k and transformed, if necessary, to the constraint scale. Using a–possibly

revised–analysis schedule, ~¦j =
n
¦¤

1; : : : ;¦¤
j;¦(j+1)j ; : : : ;¦(J¡1)j ;¦J = 1

o
, re-

compute fG²; ² = a; : : : ; dg. Evaluate whether or not to continue the trial.

4. Final analysis: if a hypothesis test critical value is required, and the …nal sample

size does not match the plan, recompute fG²; ² = a; : : : ; dg with the actual

sample size and the constrained boundary functions. If the …nal sample size
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matches the plan, critical values maybe taken from the computations at analysis

J ¡ 1. More commonly, adjusted P-values, estimates and con…dence intervals

will be computed using the sampling distribution at the …nal analysis (see, for

instance, Emerson & Fleming, 1990).

This procedure is illustrated in Table 3a with a hypothetical monitoring scenario,

which adopts the Pocock design, Plan A, from Table 2 as the pre-trial plan. Monitor-

ing is implemented with boundaries constrained on the treatment e¤ect scale. The

columns titled 1-5 summarize the status at each analysis, conditional on a trial that

does not stop prior to it. At each column’s observed analysis, the reestimated sched-

ule runs down the column with analyses numbered under the column heading |̂. We

suppose that actual interim analyses occur according to the alternative proportions

given in columns B-D of Table 2. An early analysis occurs at 1/8, ahead of the …rst

planned analysis at 1/4. At this observed …rst analysis, the planned design is replaced

with one based upon the reestimated schedule; the only di¤erences between the …rst

analysis boundaries in section a) and the Pocock boundaries in Plan B, Table 2, are

due to the rounding up of the sample size at the …rst analysis to the nearest integer.

The 2nd analysis occurs according to the schedule estimated at the …rst analysis, thus

constraining the upper boundary at the …rst analysis to equal 7.136 has no e¤ect; the

changes from the …rst analysis are due to the rounding up of the sample size for the

2nd analysis. This is in constrast to the shifts at analyses 3 and 4, from 1/2 to 3/8

and 3/4 to 5/8, respectively: the history of sample sizes and treatment e¤ect bound-

ary constraints (above the diagonal) in‡uence the boundaries at the current and later
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analyses. For this reason, the boundaries in Table 3a do not match those in Table 2,

C-D. To accomodate tabulation of the examples, the only alterations to the schedule

at each interim analysis apply to the current analysis. In practice, the entire schedule

of future analyses may be revised.

[Place Table 3 Here]

6.2 Maintaining Power

Pampallona, et. al. (1995) proposed the use of type II error spending functions for

the maintenance of power to detect a speci…ed alternative. At each analysis, their

procedure adjusts the maximal sample size until the boundary crossing probabilities

under the alternative match a function of the trial proportions, where this spending

function is pre-speci…ed at the planning stage. This novel approach may be general-

ized in the following sense: it is not necessary to transform the boundaries of a group

sequential design to the error spending scale in order to maintain type I and type II

error. It is merely necessary to re-compute boundary function critical values while

constraining on the stopping rules actually used at prior analyses. For optionally

speci…ed minimum and maximum absolute sample sizes:

1. Analyses 1; : : : ; J¡ 1: proceed as when maintaining sample size, except, subject

to any speci…ed absolute minimum or maximum, revise the maximal sample

size in an iterative search for the smallest power greater than or equal to the

design power.
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2. Final analysis: if the …nal sample size matches the estimate at analysis J ¡ 1,

critical values may be taken from the computations at analysis J¡1. Otherwise,

proceed as in 4 of maintaining sample size.

In this procedure, the estimated sample sizes at future analyses are determined by

their proportions, ¦k ; k = j+1; : : : ; J ¡ 1, of each revised maximal sample size, NJ .

This can be seen in Table 3b, where the newly computed maximal sample sizes (in

the “…nal” row of the sample size block) are apportioned to the next through the last

analyses according to the original planned trial proportions. The sample size changes

in opposition to what would otherwise have been changes in power. This may be

checked against the power estimates in Table 3a: integer decreases and increases in

the maximal sample size correspond predictably to shifts and additions of analyses.

Consider that, as the maximal sample size changes, so does the proportion of

statistical information available at earlier analyses. This is immaterial to the sampling

distribution when the variance is known, because prior-analysis boundary values are

constrained at the observed levels of statistical information. Trial proportions may,

however, require adjustment. When NJ is increasing, the proportion ¦j shrinks away

from ¦j+1. When NJ is decreasing, some convention is needed to bound ¦j away

from ¦j+1. One convention is to incorporate a user-speci…ed minimum di¤erence in

the trial proportions that separate analyses: analysis ¦j+1 is dropped if its distance

from ¦j falls below the minimum. Alternatively, implementations may reapportion

f¦j+1; : : : ;¦J¡1g to occupy the same proportions of the interval (¦j;¦J), subject to

a minimum separation, or the program may prompt the user for a revised vector of
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proportions.

6.3 Constrained Boundary Monitoring in Practice

The two monitoring algorithms given above require the history of analyses as well

as an estimate of future analyses. When constraining and implementing on the error

spending scale, the procedure in Section 6.1 is the error spending approach of Lan

& DeMets (1983) and that in Section 6.2 is the approach of Pampallona, et. al.

(1995). As noted in the introduction, the estimate of future analyses does not a¤ect

boundaries at the current analysis when implementing a design on the error spending

scale, provided that the planned maximal sample size is maintained and the variance

is known. However, operating characteristics such as power and the distribution of

NM depend on the true schedule of future analyses. In addition, if overshoot or

undershoot is possible or the variance is estimated, the error spent at the observed

trial proportions will usually not follow the planned functional form; in fact, a new,

observed error spending function results. With monitoring procedures that maintain

power or that are implemented on other scales, the estimated future analysis schedule

will in‡uence the boundaries at the current analysis. As we have described, errors

will be maintained nonetheless; what will not be maintained precisely is the planned

boundary shape.

As an example, suppose an investigator initiates a trial with an O’Brien-Fleming

boundary for a single planned analysis at a …xed maximal sample size and then

adds each interim analysis to the estimated schedule when it occurs. Application
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of the algorithm in Section 6.1 will generate boundary shapes close to those for a

pre-trial plan that accurately estimates the same complete analysis schedule. This

procedure, which repeatedly accounts for the observed history of analyses, the current

analysis and one …nal analysis, was proposed by Pampallona, et. al. (1995) for the

maintenance of power with error-spending scale implementations. As adapted here to

a …xed maximal sample size (i.e. without maintenance of power), implementations on

any chosen scale will generate boundaries independent of future analyses. However,

speci…cation of a complete analysis plan, with revisions at each actual analysis and

design and implementation on the same scale, is equally valid statistically and will

tend to generate stopping sets closer to the planned design while providing monitoring

boards with forecasts essential for decision making, such as the probability of reversing

a decision.

6.4 Incorporating Variance Estimates

The boundary transformations in Equations 2 and 3 are one-to-one for a given

pair of response variances, (¾20; ¾21). When the variance is unknown, one option

for incorporating variance estimates, at analysis j, is to …x the variance estimate

at each prior analysis according to the statistical information available at the time:

V̂k = V
¡
Nk; ¾̂20k; ¾̂21k

¢
; k · j. When taking this approach, the boundary trans-

formations are one-to-one and …xed for prior analyses, with respect to the variance

estimates, and the only change to the sampling density is the addition of the current

analysis at the top level of recursion (refer to Equation 1). The sampling density be-
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comes a function of the sequence of variance estimates
n
V̂1; : : : ; V̂k ; : : : ; V̂j

o
. These

facts imply that any constraint scale will produce the same sequence of stopping sets,

conditional on the …nal, observed analysis schedule and the sequence of estimated

analysis schedules. They also imply that the sampling density is based upon esti-

mates of statistical information that might not be in the same proportion to their

maximum as the known sample sizes are to the maximal sample size. In fact, the

estimated level of statistical information might, occasionally, decrease in j (i.e., in

our setup, whenever V̂k < V̂j ; k < j).

An alternative procedure de…nes V̂kj = V
¡
Nk; ¾̂20j ; ¾̂

2
1j

¢
; k · j , where the in-

tuition is to incorporate all available statistical information into the estimate of the

sampling density. It should be evident that the two approaches are asymptotically

equivalent, provided that the incremental sample sizes, n`j; ` = 0; 1, are increasing

in NJ for every j. With the latter, only boundary values on the constraint scale

will remain …xed at later analyses; alternate scale expressions of the boundaries will

change as their transformations (from the constraint scale) are updated to re‡ect

the most recent variance estimates. In addition, if the constraint scale is a func-

tion of the variance estimates, then updated estimates of the corresponding statistics

at prior analyses may fall outside their continuation sets. For example, at a hypo-

thetical 2nd analysis, where the stopping set and constraint scales correspond to a

…xed-sample Z statistic, we know that z1 = V ¡
1
2

1 µ̂1 < d¤1. However, it is possible

that z12 = V ¡
1
2

12 µ̂1 > d¤1, where the z12 is based upon the variance estimates at the

2nd analysis, but d¤1 remains constant, since it is the constrained boundary value.
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While these two properties are worthy of note, the decisions to be made at the cur-

rent analysis depend upon the estimated, approximate sampling density to compute

current-analysis boundaries and/or adjusted estimates and p-values. For this reason,

we prefer the 2nd approach, using all of the available statistical information.

In Table 4a, the known variance in Table 3a has been replaced by a sequence of

variance estimates computed from a simulated normal sample. Because boundaries

have been constrained on the sample mean scale, the upper triangular of the error

spending boundaries is no longer constant across rows. At the …rst analysis, the error

spent is estimated to be 0.2887, which is a one-to-one transformation of the treatment

e¤ect boundary value, 8.505, conditional on the estimates of the group variances. At

analysis 2, variance estimates are based upon 93 total observations. The much smaller

estimate of the sum of variances (209) corresponds with a more than 70% reduction

in the estimate of the error spent at the …rst analysis (0.0862). As another example,

consider the treatment e¤ect boundary at the 2nd analysis in Table 4a. The boundary

(5.038) has changed from its estimated value in the plan (4.923) and from the …rst

analysis (6.071), due to the added earlier analysis, with its associated constraint, and

the more precise variance estimate at analysis 2. The slight increase in the estimated

error spent at the 2nd analysis, from the plan (0.3642) to the …nal analysis (0.3843),

is a function of the sequence of variance estimates and the sequence of constraint

vectors applied at analyses 2-5. Because the …nal sum of variances is overestimated

(i.e. 206.6 > 200), the true percentage of error spent at each analysis is (0.0756,

0.3699, 0.6069, 0.7496, 0.9048), compared to the estimated (0.0824, 0.3843, 0.6222,

0.7626, 1.0000). Note also that the sequence of Z scale boundaries along the diagonal
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is no longer constant, as in the original Pocock design (“Plan” column). The diagonal

shows the boundaries that would be used to make stopping decisions, if the stopping

set scale were speci…ed to be the normalized Z scale. By following the columns down,

below the diagonal, it is evident how the procedure repeatedly …ts the original design’s

boundary shape to the current and future analyses.

[Place Table 4 Here]

Table 4b illustrates the induced error spending function implementation of the

original Pocock design. Constraints at prior analyses are speci…ed on the error spend-

ing scale. While the sample is identical in Tables 4a and 4b, all the monitoring bound-

aries have changed. This is due to the use of an induced error spending function and

to the di¤erent constraint scale. The latter accounts for the constant upper triangular

of the error spending boundary matrix in Table 4b. In contrast, the transformations

that map prior analysis boundaries to the treatment e¤ect scale are now updated

to re‡ect the most recent variance estimates. For instance, an estimated treatment

e¤ect of 8 at the …rst analysis in Table 4b would not have resulted in early stopping,

but, when computing the sampling density according to Equation 1, with the updated

variance estimate, we eventually estimate that 8 is in the …rst stopping set.

Also in Table 4b, note that the estimated Z scale boundaries running down the

column below the diagonal are no longer constant: the interpolated error spending

function boundaries transform to a constant on the normalized Z scale, in general,

only at the information levels originally estimated in the plan (i.e. those used to con-

struct the function). In Table 4a, as the variance estimates stabilize with increasing
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sample size, the repeated re…tting of the original boundary shape tends to stabilize

the boundary shape over the current and future analyses. In contrast, the interpo-

lated function is never corrected for changing analysis times or variance estimates.

This may be why the variability of the Z scale boundary along the diagonal in Table

4b is markedly greater than that of Table 4a.

When maintaining power (Table 5), in comparison to Table 3b, the use of variance

estimates results in greater variability in the estimate of the maximal sample size

required to maintain power. For the error spending scale implementation (Table 5b),

note that the sample size proportions at which error spending scale constraints are

applied become a function of the estimated maximal sample size at each analysis. This

illustrates again how the timing of analyses and variance estimates can reduce the

conformity of the observed boundary shape (in Table 5b, an error spending function)

to the planned boundary shape.

7 Discussion

The distribution of variance estimates has an important in‡uence on the sequence of

stopping rules generated during a ‡exibly monitored trial. The illustrations in Tables

4-5 made use of the true variance at the planning stage, for comparison; inaccurate

design-time variance estimates will also contribute to di¤erences between the observed

stopping rule and the plan. It is important to consider that, at the end of the trial,

inference and estimation make use of the …nal variance estimate: boundaries at early

analyses, computed with less precise variance estimates, become part of the history
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in the …nal, best estimate of the sampling distribution. In this sense, they represent

part of the continuing re…nement to the stopping rules and analysis schedule of the

trial, in which every stage takes proper account of the past. Planning-stage group

sequential designs need to be presented to collaborators and monitoring boards as

estimates to be re…ned over the course of the trial.

With the availability of constrained boundary monitoring, design-time evaluations

of group sequential stopping rules may focus upon their appropriateness to the sci-

enti…c context. Important statistical operating characteristics can be maintained for

the selected design, as is. In particular, design and implementation scales may re‡ect

investigative rather than purely statistical requirements. In some cases, a less inter-

pretable scale may be used for the stopping sets, such as the …xed-sample P-value

scale, as mentioned in Section 6. However, when it is possible to use the treatment

e¤ect “stopping set” scale, it will have the advantage of ease of interpretation. For a

recent discussion of the evaluation of group sequential designs, see Emerson, Kittelson

& Gillen (2003).

The e¤ects of updated variance estimates on boundary transformations suggest an

interpretive advantage to constraining on the scale used to make stopping decisions:

boundaries at prior analyses remain constant on the constraint scale. Hence, historical

revisions to the scienti…c interpretation of the stopping rule need not be presented

to the monitoring board. Of course, the statistical interpretation of a treatment

e¤ect boundary …xed at 8.670 changes with each updated variance estimate, but this

subtlety may remain in the background.

The methods described here have been implemented in the software package
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S+SeqTrial within parametric design families de…ned on a variety of scales. In ad-

dition to ‡exible monitoring, design-time minimum, maximum and exact constraints

are supported.
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8 Figures
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Figure 1: ASN by Treatment E¤ect for Constrained
(minimum constraint of 0.0005 on the one-sided …xed-sample P-value)
and Unconstrained O’Brien-Fleming Group Sequential Designs
H0: µ = 0 ; H 1: jµj ¸ 0:5 ; ® = 0:025;power : 0:975; ¾20 = ¾21 = 1
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9 Tables

Table 1
Unconstrained and constrained O’Brien-Fleming designs

P-value Scale µ̂ Scale Partial Sum
i) Unconstrained
Time 1 (N= 16)
Time 2 (N= 32)
Time 3 (N= 48)
Time 4 (N= 64)
ii) Minimum constraint
Time 1 (N= 16)
Time 2 (N= 32)
Time 3 (N= 48)
Time 4 (N= 64)

a d
1.0000 0.0000
0.9979 0.0021
0.9903 0.0097
0.9785 0.0215
a d
0.9995 0.0005
0.9979 0.0021
0.9904 0.0096
0.9787 0.0213

a d
-20.24 20.24
-10.12 10.12
-6.75 6.75
-5.06 5.06

a d
-16.45 16.45
-10.14 10.14
-6.76 6.76
-5.07 5.07

a d
-161.94 161.94
-161.94 161.94
-161.94 161.94
-161.94 161.94
a d
-131.62 131.62
-162.24 162.24
-162.24 162.24
-162.24 162.24

O’Brien-Fleming (1979) test of H0 : µ = 0 ; H1 : jµj ¸ 10 ; ® = 0:025; ¾20 = ¾21 = 100:
i) unconstrained (power: 0.9773) and ii) minimum constraint (power: 0.9771):

0.0005 on the one-sided …xed-sample P-value.
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Table 2
Altering the Timing and Spacing of Analyses; ¾21 = ¾22 known

i) O’Brien-Fleming f¦jg A B C D
Power Est. 0.9750 0.9750 0.9753 0.9758
Sample Size 324 324 324 324
ASN, Null 321.8 321.8 322.1 322.3
ASN, Alternative 213.8 213.8 229.6 218.2

1/8 – 17.999 17.942 17.770
Upper Boundary, d 1/4 8.999 8.999 8.971 8.885

3/8 – – 5.981 5.923
(treat. e¤ect scale) 1/2 4.500 4.500 – –

5/8 – – – 3.554
3/4 3.000 3.000 2.990 –

…nal 1 2.250 2.250 2.243 2.221
1/8 – 0.0000 0.0000 0.0000

Upper Boundary, d 1/4 0.0010 0.0010 0.0011 0.0013
3/8 – – 0.0201 0.0225

(error spending scale) 1/2 0.0844 0.0844 – –
5/8 – – – 0.2381
3/4 0.4182 0.4182 0.4042 –

…nal 1 1.0000 1.0000 1.0000 1.0000
ii) Pocock f¦jg A B C D
Power Est. 0.9750 0.9698 0.9694 0.9685
Sample Size 369 369 369 369
ASN, Null 359.7 357.9 357.7 357.5
ASN, Alternative 177.5 173.0 176.4 171.4

1/8 – 7.215 7.216 7.225
Upper Boundary, d 1/4 4.923 5.102 5.103 5.109

3/8 – – 4.166 4.172
(treat. e¤ect scale) 1/2 3.481 3.607 – –

5/8 – – – 3.231
3/4 2.842 2.946 2.946 –

…nal 1 2.462 2.551 2.551 2.555
1/8 – 0.2881 0.2877 0.2853

Upper Boundary, d 1/4 0.3642 0.5030 0.5024 0.4983
3/8 – – 0.6683 0.6630

(error spending scale) 1/2 0.6309 0.7067 – –
5/8 – – – 0.8357
3/4 0.8351 0.8679 0.8644 –

…nal 1 1.0000 1.0000 1.0000 1.0000
d Boundary (Z scale) 2.3613 2.4470 2.4475 2.4505

Eight pre-trial design alternatives.
a) O’Brien-Fleming (1979) & b) Pocock (1977) tests of
H0 : µ = 0 vs: H1 : jµj ¸ 4:40; ¾21 = ¾22 = 100, ® = 0:025
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Table 3
Monitoring with constrained boundaries; ¾21 = ¾22 known

a) Maint. Samp. Size |̂ Plan j : 1 2 3 4 …nal
Power Est. 0.9750 0.9702 0.9702 0.9698 0.9686 0.9686

1 – 47 47 47 47 47
2 92.0 92.25 93 93 93 93

Sample Size 3 184.1 184.5 184.5 139 139 139
4 276.1 276.8 276.8 276.8 231 231

…nal 5 368.1 369 369 369 369 369
1 – 7.136 7.136 7.136 7.136 7.136

Upper Boundary, d 2 4.923 5.094 5.073 5.073 5.073 5.073
(treat. e¤ect scale) 3 3.481 3.602 3.602 4.151 4.151 4.151

4 2.842 2.941 2.941 2.942 3.230 3.230
…nal 5 2.462 2.547 2.547 2.547 2.555 2.555

1 – 0.2887 0.2887 0.2887 0.2887 0.2887
Upper Boundary, d 2 0.3642 0.5022 0.5030 0.5030 0.5030 0.5030
(error spending scale) 3 0.6309 0.7062 0.7062 0.6684 0.6684 0.6684

4 0.8351 0.8677 0.8677 0.8643 0.8379 0.8379
…nal 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d Boundary (Z scale) 2.3613 2.4463 2.4462 2.4468 2.4543 2.4543
b) Maintain Power |̂ Plan j : 1 2 3 4 …nal
Power Est. 0.9750 0.9753 0.9751 0.9753 0.9751 0.9751

1 – 47 47 47 47 47
2 92.0 96.0 96 96 96 96

Sample Size 3 184.1 192.0 191.6 144 144 144
4 276.1 288.0 287.4 288.8 242 242

…nal 5 368.1 384.0 383.2 385.1 387.8 388
1 – 7.141 7.141 7.141 7.141 7.141

Upper Boundary, d 2 4.923 4.997 4.996 4.996 4.996 4.996
(treat. e¤ect scale) 3 3.481 3.533 3.537 4.082 4.082 4.082

4 2.842 2.885 2.888 2.882 3.160 3.160
…nal 5 2.462 2.498 2.501 2.496 2.496 2.495

1 – 0.2874 0.2874 0.2874 0.2874 0.2874
Upper Boundary, d 2 0.3642 0.5038 0.5039 0.5039 0.5039 0.5039
(error spending scale) 3 0.6309 0.7072 0.7072 0.6692 0.6692 0.6692

4 0.8351 0.8682 0.8682 0.8648 0.8387 0.8387
…nal 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
d Boundary (Z scale) 2.3613 2.4478 2.4477 2.4489 2.4577 2.4578

Pocock (1979) boundaries constrained on the treatment e¤ect scale.
H0: µ = 0 vs: H 1: jµj ¸ 4:40; ¾21 = ¾

2
2 = 100, ® = 0:025

a) Maintain Sample Size b) Maintain Power
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Table 4: Maintaining sample size with Pocock (1977) boundaries
a) Treat. Scale Const. |̂ Plan j : 1 2 3 4 …nal
¾̂21 + ¾̂

2
2 (unknown) 200.0 284.6 209.0 202.6 213.3 206.6

Power Estimate 0.9750 0.8885 0.9684 0.9732 0.9590 0.9704
1 – 47 47 47 47 47
2 92.0 92.3 93 93 93 93

Sample Size 3 184.1 184.5 184.5 139 139 139
4 276.1 276.8 276.8 276.8 231 231

…nal 5 368.1 369 369 369 369 369
1 – 8.514 8.514 8.514 8.514 8.514

Upper Boundary, d 2 4.923 6.077 5.044 5.044 5.044 5.044
(treat. e¤ect scale) 3 3.481 4.297 3.581 4.036 4.036 4.036

4 2.842 3.508 2.924 2.861 3.331 3.331
…nal 5 2.462 3.038 2.532 2.477 2.635 2.480

1 – 0.2887 0.0862 0.0747 0.0943 0.0818
Upper Boundary, d 2 0.3642 0.5022 0.3972 0.3568 0.4247 0.3821
(error spending scale) 3 0.6309 0.7062 0.6481 0.5829 0.6855 0.6212

4 0.8351 0.8677 0.8425 0.8314 0.8402 0.7616
…nal 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 – 2.446 2.855 2.900 2.826 2.871
Upper Boundary, d 2 2.361 2.446 2.379 2.417 2.355 2.393
(Z scale) 3 2.361 2.446 2.379 2.364 2.304 2.341

4 2.361 2.446 2.379 2.364 2.451 2.490
…nal 5 2.361 2.446 2.379 2.364 2.451 2.343
b) Err. Spend Const. |̂ Plan j : 1 2 3 4 …nal
Power Estimate 0.9750 0.9021 0.9694 0.9742 0.9688 0.9730

1 – 9.045 7.751 7.637 7.835 7.713
Upper Boundary, d 2 4.923 6.278 5.352 5.273 5.410 5.326
(treat. e¤ect scale) 3 3.481 4.174 3.579 4.328 4.440 4.371

4 2.842 3.394 2.909 2.771 3.234 3.184
…nal 5 2.462 2.936 2.516 2.464 2.471 2.433

1 – 0.1856 0.1856 0.1856 0.1856 0.1856
Upper Boundary, d 2 0.3642 0.3642 0.3664 0.3664 0.3664 0.3664
(error spending scale) 3 0.6309 0.6309 0.6309 0.4994 0.4994 0.4994

4 0.8351 0.8351 0.8351 0.8351 0.7338 0.7338
…nal 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 – 2.602 2.602 2.602 2.602 2.602
Upper Boundary, d 2 2.361 2.530 2.527 2.527 2.527 2.527
(Z scale) 3 2.361 2.379 2.380 2.536 2.536 2.536

4 2.361 2.369 2.369 2.291 2.381 2.381
…nal 5 2.361 2.366 2.366 2.352 2.299 2.299
H0: µ = 0 vs: H 1: µ = 4:40; ¾21 = ¾22 = 100 (unknown); ® = 0:025
a) Constrained on the treatment e¤ect scale. b) Constrained on the error spending
scale with an error spending function interpolated from the original Pocock design.
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Table 5: Maintaining power with Pocock (1977) boundaries
a) Treat. Scale Const. |̂ Plan j : 1 2 3 4 …nal
Power Estimate 0.9750 0.9752 0.9750 0.9751 0.9751 0.9774
¾̂21 + ¾̂

2
2 (unknown) 200.0 284.6 205.2 203.9 211.8 209.9

1 – 47 47 47 47 47
2 92.0 137.3 138 138 138 138

Sample Size 3 184.1 274.6 186.6 141 141 141
4 276.1 411.9 279.9 275.8 230 230

…nal 5 368.1 549.2 373.2 367.7 393.6 394
1 – 8.556 8.556 8.556 8.556 8.556

Upper Boundary, d 2 4.923 5.006 4.041 4.041 4.041 4.041
(treat. e¤ect scale) 3 3.481 3.540 3.475 3.925 3.925 3.925

4 2.842 2.890 2.837 2.807 3.201 3.201
…nal 5 2.462 2.503 2.457 2.431 2.447 2.410

1 – 0.2792 0.0737 0.0736 0.0796 0.0764
Upper Boundary, d 2 0.3642 0.5140 0.4286 0.4282 0.4777 0.4643
(error spending scale) 3 0.6309 0.7140 0.6271 0.5127 0.5706 0.5553

4 0.8351 0.8713 0.8319 0.8044 0.7801 0.7595
…nal 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 – 2.458 2.904 2.904 2.880 2.893
Upper Boundary, d 2 2.361 2.458 2.350 2.351 2.306 2.317
(Z scale) 3 2.361 2.458 2.350 2.308 2.265 2.275

4 2.361 2.458 2.350 2.308 2.359 2.370
…nal 5 2.361 2.458 2.350 2.308 2.359 2.335

b) Err. Spend Const. |̂ Plan j : 1 2 3 4 …nal
Power Estimate 0.9750 0.9752 0.9750 0.9751 0.9751 0.9774

1 – 9.458 7.959 8.013 8.167 8.131
Upper Boundary, d 2 4.923 6.147 4.119 4.147 4.227 4.208
(treat. e¤ect scale) 3 3.481 3.493 3.563 4.276 4.359 4.339

4 2.842 2.844 2.838 2.774 3.277 3.263
…nal 5 2.462 2.461 2.454 2.470 2.364 2.352

1 – 0.1304 0.1304 0.1304 0.1304 0.1304
Upper Boundary, d 2 0.3642 0.3657 0.4720 0.4720 0.4720 0.4720
(error spending scale) 3 0.6309 0.6317 0.6309 0.5066 0.5066 0.5066

4 0.8351 0.8354 0.8351 0.8351 0.6999 0.6999
…nal 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 – 2.720 2.720 2.720 2.720 2.720
Upper Boundary, d 2 2.361 2.481 2.351 2.351 2.351 2.351
(Z scale) 3 2.361 2.377 2.427 2.515 2.515 2.515

4 2.361 2.368 2.367 2.282 2.415 2.415
…nal 5 2.361 2.366 2.363 2.346 2.279 2.279
a) Constrained on the treatment e¤ect scale. b) Constrained on the error spending
scale with an error spending function interpolated from the original Pocock design.
H0 : µ = 0 vs: H1 : µ = 4:40; ¾21 = ¾22 = 100 (unknown); ® = 0:025
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